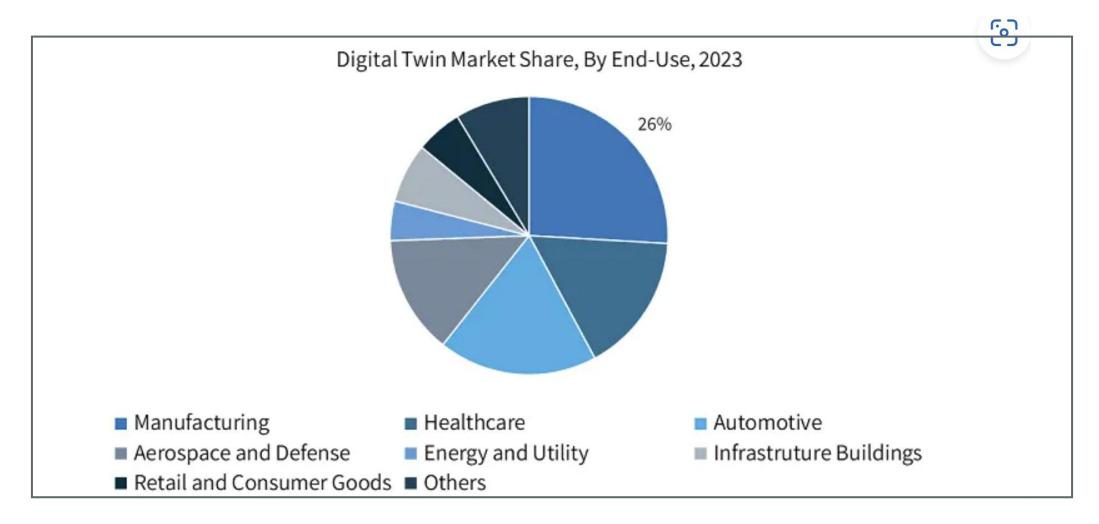
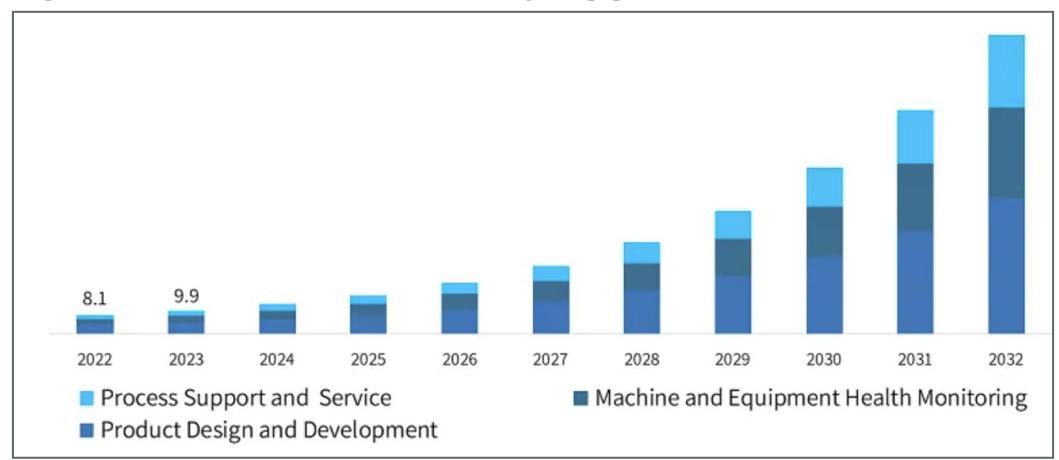


Advancing Digital Twin Innovation


Dan Isaacs: CTO and GM January 2025


Digital Twin Market Forecast

Source: www.gminsights.com

Digital Twin Market Size, By Application, 2022-232 (\$B)

Source: www.gminsights.com

Advancing Digital Twin Innovation

Increasing industry adoption of Digital Twins from on-premise to cloud

- Accelerating over a wide range of use cases
- Spanning from informant to performant
- Including the emergence of AI-integrated digital twins

Expanding the Digital Twin Consortium scope to encompass

- Advanced Digital Engineering methodologies and leading practices (MBSE, MBD,...)
- Digital Thread Lifecycle from origination to decommissioning
- Integration of AI driving Digital Twin evolution and adoption

Steering Committee Members

200+ Members and Growing

Digital Twin Use Cases in Progress

Aerospace & Defense Asset simulation, test, and operation / maintenance Continuous improvement of existing assets for EOL extension Dev SecOps - network cyber resiliency Maintenance / assembly training, mixed reality	Mobility & Transportation Intelligent infrastructure Management and efficiency of airports / seaports / inland ports Monitoring of bridges for safety Highway traffic and congestion analysis Software Defined Vehicles	Agriculture, Food & BeverageMaximize crop yieldVertical FarmingMinimize energy and water useSustainableSupply chain	Pharma & Regulatory Drug Discovery Development/Manufacturing Compliance and Regulation Production and Delivery	Telecommunications Network Coverage/Security 5G/6G Signal Dispersion Emergency Management/Response Air, Land and Sea Communications	Sustainability ClimaTech Carbon Reporting Governance and Compliance Circular Economy
Healthcare & Life Sciences How systems are developed, designed and deployed Personalization for precision medicine Disease detection and analysis, treatment	AECO Smart Building/Cities Facility Management Urban Planning Surface/Sub-Surface Reality Capture Temporal and Spatial Data Visualization	Natural Resources Grid design and upgrade Resilient and secure Disaster prediction and emergency service delivery Renewables: Wind, Solar, Hydro Alternative Energy Mining, Asset track & trace,	FinTech Secure transactions Operational resilience Smart Contracts Regular validation - Equitable - Trustworthy	Manufacturing Asset/Product improvement Additive manufacturing Asst/Product lifecycle management (CASE) Supply chain logistics / management Packaging reduction Quality control	Academia & Research Digital twins across industrial, cities, supply chains, smart agriculture, sustainability, etc. Workforce skills development Educational Curriculum Training/Certification Research Grants

End Users – Catalyst for new Use Cases

Academia and Research

Open Source Developers

Supply Chain

Modular Nuclear Energy

Research Institutes

Financials

Transportation

Pharma

Smart Cities

Healthcare

Maritime

Precision Agriculture

Smart Buildings

Data Centers

Airports

Regulatory and Compliance

Aerospace & Defense

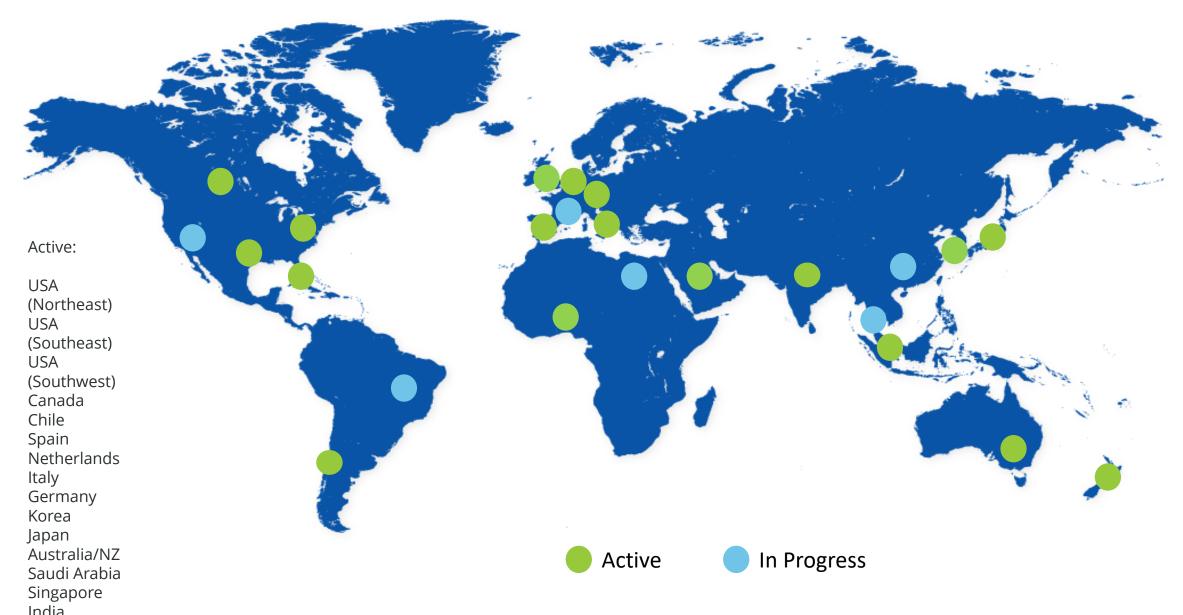
Manufacturing

Oil & Gas

Emergency Management

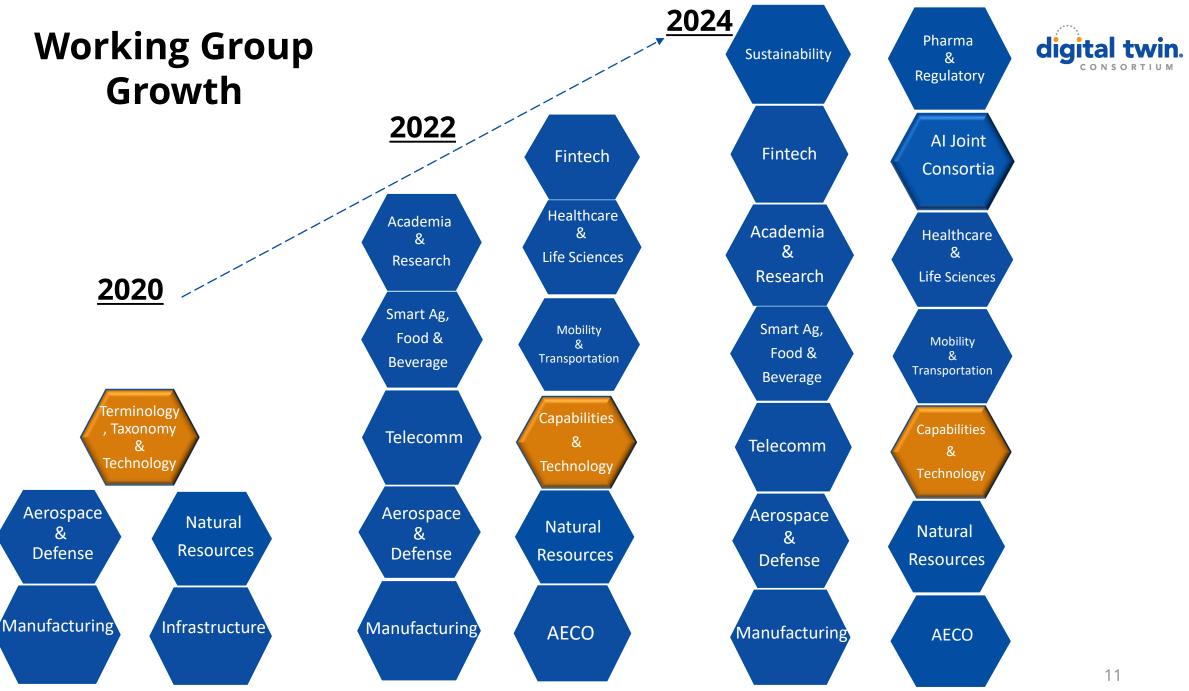
Artificial Intelligence

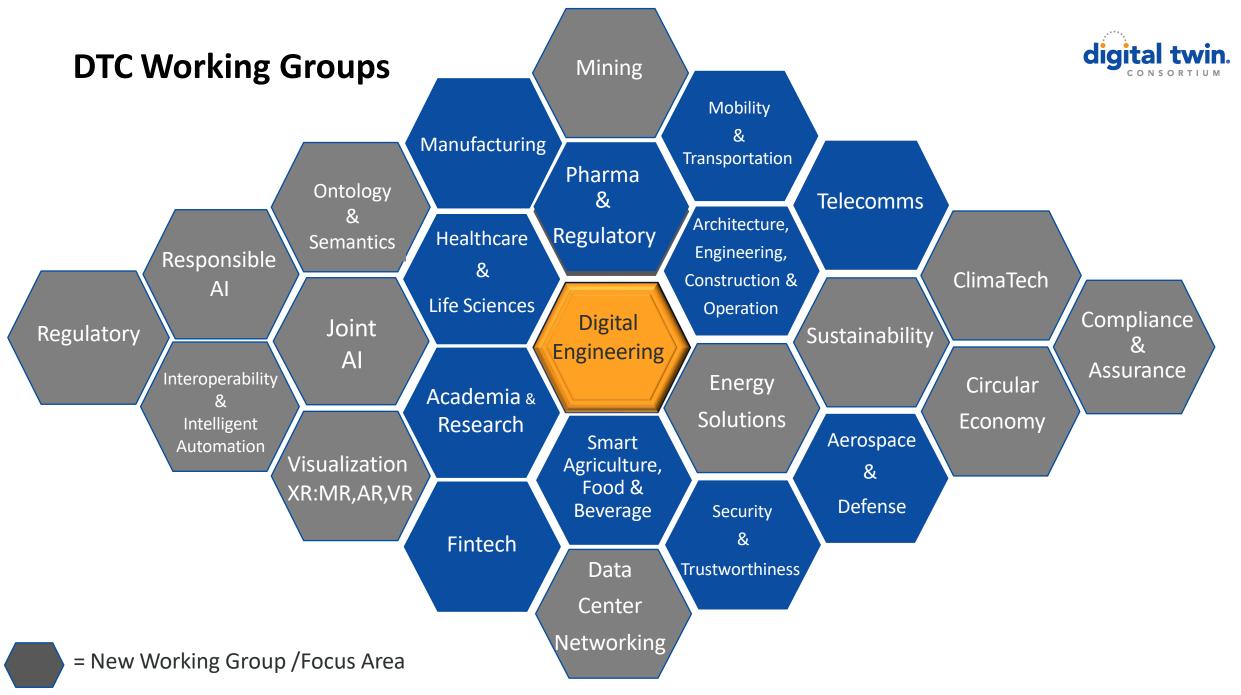
Robotic Automation



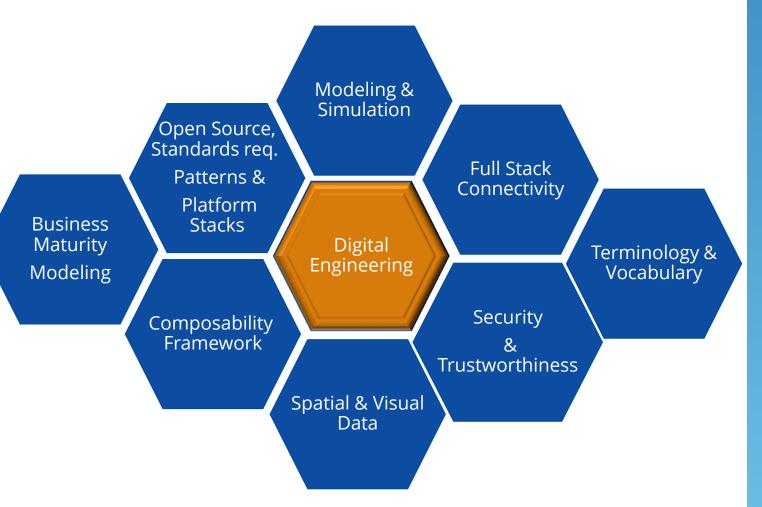
Renewables

Telecomm


Regional Branch Coverage



Liaisons - Global Collaboration


^{© 2025} Digital Twin Consortium. All rights reserved.

Digital Engineering Subgroups Creating the Foundation for the Digital Twins

Focus

- Helps to create and identify the horizontal foundational elements and fundamental building blocks for digital twins
- Contributes to standard requirements, open source and cross-functional use cases
- Identifies and develops composable frameworks through corresponding subgroups that focus on business maturity models, system reference architectures, simulation & modeling, security & trust and spatial & visual data.
- Develop use cases and case studies that align and are consistent with the composable framework for the Technology Showcase and promote the Technology Spotlight, focusing on DTC member innovation and thought leadership.

New Working Groups

- Focus Includes: Networking, Enterprise, Operations, Energy Efficiency, Sustainability, Security, Reliability
- Safety, Encompassing Entire Value Chain and Digital Marketplace

 Encompasses both Traditional: Oil and Gas, Nuclear and Alternative Energy sources

New Subgroup Focus Areas In Progress

Manufacturing Working Group

Digital Engineering Working Group

Structure

Member Driven

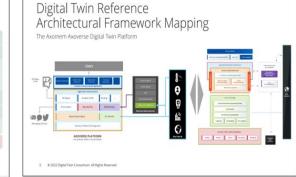
- Highly Collaborative
- Results Oriented
- Demonstrative
- Global Regional Branch Organizers
- Industry-wide Liaisons

© 2024 Digital Twin Consortium. All rights reserved.

Frameworks

Showcase

- ROC Windfarms XMPro
- Ecol Café End-to-End Enterprise Digitalization I4.0
- 5G Secure Network Intuitus
- Battery System Development Dassault Systemes
- Flood Management University of Melbourne
- Tracking Injuries in Hospitals Axomem
- Long-haul COVID Management Dell
- Financial Transactions Intuitus
- Smart Airports and AR EventSystems, others
- Intelligent Transport Autonomy Institute


From Work Product to Use Case Workflow

	Level 1 Passive	Level 2 Starter	Level 3 Progressive	Level 4 Mature	Level 5 Master
Strategy & Ops	No clear strategy	Limited strategy Unaligned with Ops	Limited strategy & Ops alignment	Strategy consistency & Ops alignment	Strategy continuously drives Ops decisions
Leadership	"Leaders" are misnomer	Traditional and limited leadership capabilities	Leadership skills recognized but not embedded in ways of working	Leadership enables cross-functional collaboration	Leadership promotes continuous change
Culture, Change & Capability	Active resistance to change and ideas	Change is the exception not the norm	Change not integrated at a strategic level	Digital Twins are recognized as effective drivers for change	Change is integral to culture supported by Digital Twin & Aglie
Operating Model & Process Standardization	Siloed Ops, ad-hoc decisions, no data, no process	Limited process standardizations	Process standardization & basic automation	End to end process automation & Intelligence	Use of (DTO) and real time operational monitoring
Digital Twin Technology	Descriptive scattered, static data in systems no integration, communication or automation 	Diagnostic • operational & sensory data • dashboard with operational insights	Predictive contextualized data machine learning some automation, connected data and systems	Prescriptive real time data from integrated systems situational awareness recommendations	Autonomous

Digital Twin Maturity Assessment

1 Data Acquisition &		a) Enterprise System		Ji Predictory		20 Last Visalization	6 Defibierit
Rgestion J Data Straaming		tetegratus.		H Hadronesen M		ati Advanced Visualization	Ni Continuous Intelligence
) Data Transformation	13 Digital Twin (DT) Model Repeatory	57 OT/N/T System Integration				41 Real-time Monitoring	
4 Data Contestualization	12 DT Instance Repository	Digital Twin Integration	28 Alama & hanifications				
3 Batch Processing	13 Temporal Data Store					43 Augmented faulty All	er Gaming Exp Visualization
E Real-time Processing		II AR Services	28 Data Analysis & Analytics		38 Composition	an Virtual Reality VR	10 3D Renderin
			54 Exercianging	38 Data thoughton	58 Security	un Salaty	
1 Data Aggregation		13 System Monitoring	54 Data Governance		10 Prinace	es Relabity	ti Realisates

Identification of Capabilities

Mapping to Platform Stack Framework

		digital tw
INFECTIOUS DISEASE MANAGEMENT		
INFECTIOUS DISEASE MANAGEMENT	VALUE	

Digital Twin Implementation

Technology Showcase Reference Library

Welcome to the digital twin industry's definitive use case reference library

The Technology Showcase is a living journal that chronicles the evolution of digital twins. Here, you will learn how our members are building the digital infrastructure of the future.

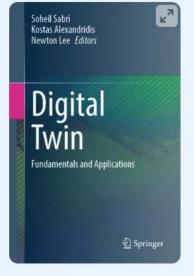
OPERATIONS

CENTER (ROC)

PUBLIC

SAFETY

<u>DISEASE</u> <u>MANAGEMENT</u>



EMISSIONS

REPORTING

Digital Twin

Fundamentals and Applications

Book | Jan 2025

Overview

Editors: Soheil Sabri, Kostas Alexandridis, Newton Lee

- Provides a well-rounded overview and demonstration of digital twin and digital transformation technologies
- Explores and showcases how digital twins advance our ability to address and solve contemporary problems
- Links state-of-the art theory, methodology, and practice across academic, governance and industry institutions

- Led by Academia & Research WG Co-Chairs
- Contributions from:
 - UCF
 - CSDILA
 - OC Survey
 - Institute for Education, Research and Scholarships
 - Georgia Institute of Technology
 - University of Leeds
 - Aker BP
 - RWTH Aachen University
 - Agile Fractal Grid
 - Digital Twin Institute

ORDER ONLINE:

Digital Twin: Fundamentals and Applications

Evolution towards Intelligent Digital Twins

Intelligent digital twins and the development and management of complex systems – Dr. Michael Grieves

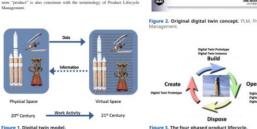
Research Gate# 360863845

Digital Twin 2022, 2:8 Last updated: 20 IUN 2022

1 Introduction

While the concept of Digital Twins (DTs) has existed for over a decade and a half (Marr, 2017), it is only over the last few years that digital twins have become one of the most critical and important technologies for product manufacturers. At the same time, products1 continue to become more complex and, with the advancements in Artificial Intelligence (AI), will also exhibit emergent behavior.

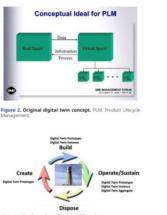
Digital twins will need to keep pace. DTs will need to become more than information repositories and take on an intelligent role. The premise that digital twins will evolve to include intelligence" has existed for a few years (Grieves, 2018). This discussion will define what intelligence means in this context and present the characteristics and capabilities that these Intelligent Digital Twins (IDTs) will need to possess.

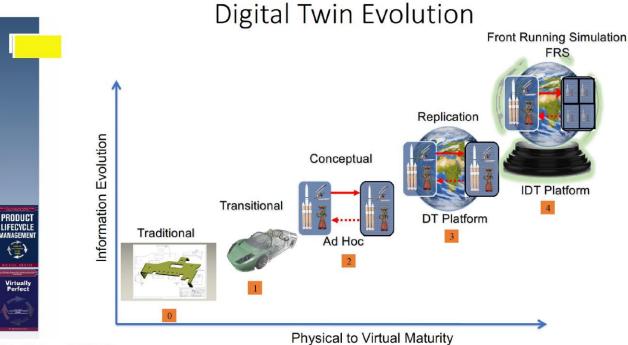

There still exists confusion as to what a digital twin is. As is not unusual for complex concepts, simple definitions do not adequately capture the scale and scope of the digital twin concepts. Models are much richer and do much better job of conveying concepts. This article will provide the latest models and their explanations

2 Digital twins

20th Century

It is useful to review just what a DT is. The Digital Twin Model is a concept that, as shown in Figure 1, consists of three main elements: an actual or intended physical element on the left side that currently exists or will exist in the physical world (the "Physical Twin"), the virtual or digital counterpart on the right

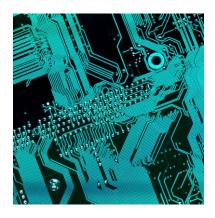

Terminology can be very fuzzy around the concept of manmade artifacts. I have been fairly consistent in my use of "product" over the years to refer to tangible artifacts such as airplanes, spacecraft, power generation equipent, medical devices, etc. These products can also be cons though all systems are not products. I will use products and systems inter hangeably with the assumption these systems are products. The use of th term "product" is also consistent with the terminology of Product Lifecycle


side that exists in the virtual or digital world ("the Digital Twin"), and the communication channel of data and information between these two elements (the "Digital Thread").

The Digital Twin Model was first introduced in 2002 without a name (Grieves, 2002). As shown in Figure 2, it was simply captioned as the "Ideal for PLM." PLM stood for Product Lifecycle Management and was the concept emerging at the time of a product-centric versus a functional-centric (engineering, manufacturing, support) approach to product development It focused on the information about a product being populated and consumed from a logically centralized source across the four phases of a product's lifecycle: create, build, operate/sustain and dispose

This logically centralized information about the product through out its lifecycle was in essence the "Digital Twin." It received its current name in 2010 from John Vickers of NASA (Pinscik et al., 2010). However, it remained a high level, undifferenti ated model until 2016 when it was divided into types (Grieve & Vickers, 2017). These types were associated with the different phases of the product lifecycle and are illustrated in Figure 3

Page 3 of 24


© Michael W. Grieves, LLC 2003-2022

Digital Twin Evolution

Traditional (DT)

- Passive
- Offline
- Goal Given
- Predictive

DATA

Intelligent (IDT)

- Active
- Online
- Goal Seeking
- Anticipatory

DATA FLOW

Multi-Agent GenAI (MAGS)

- Interactive
- Autonomous
- Reasoning
- Decision-Making

GENERATIVE

Adopted from: <u>Grieves, Michael. (2022). Intelligent digital twins and the development and management of</u> complex systems. Digital Twin. 2. 8. 10.12688/digitaltwin.17574.1.

Gen AI Multi-Agent Systems: A Secret Weapon for Tech Teams

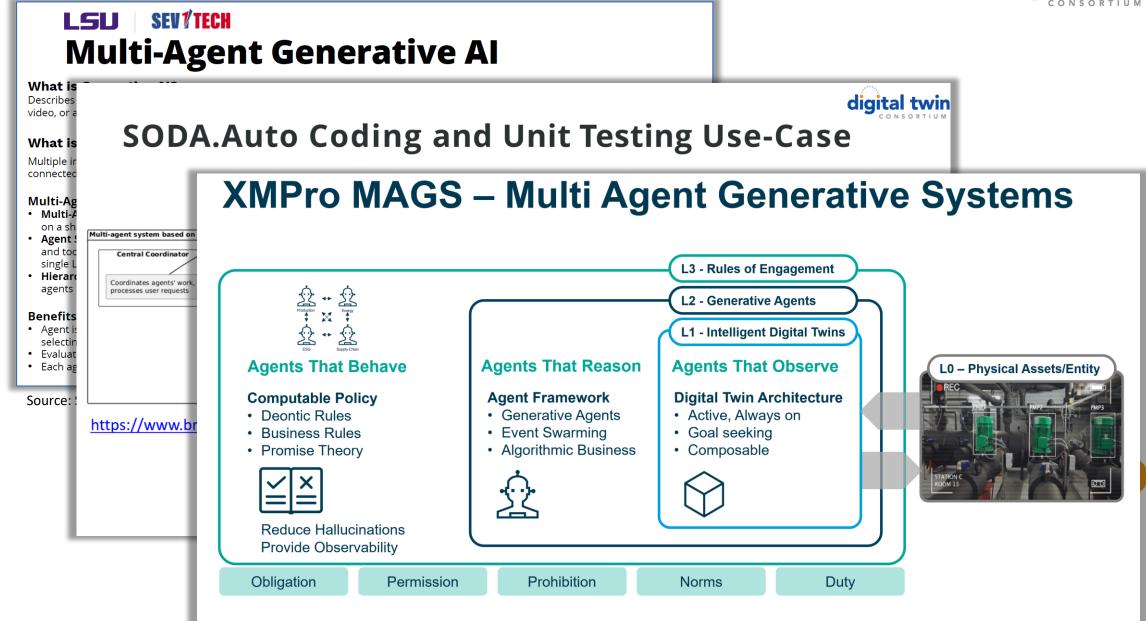
Multi-agent Gen AI systems can greatly enhance and accelerate the process of ideating, designing, and testing new products.

May 28th, 2024 1:19pm by Dan Kraemer

...Multi-agent GenAI systems are much like they sound: a collection of AI agents working together. Whereas one agent does a single task, such as a coding co-pilot, a multi-agent system combines multiple <u>development tasks</u> — product ideation, design, testing, customer segmentation, etc. — that learn from one another to optimize creativity and productivity. Successful multi-agent systems act as a "digital twin" for your development team, continually generating multiple new concepts and future scenarios. Multi-agent systems don't replace <u>development and product teams</u>, but instead augment them.

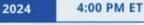
Digital Twin Consortium Members Develop and Deploy Multi-Agent Gen Al Systems Use Cases of Digital Twin Multi-Agent Generative Al Systems Deliver Added Value

BOSTON, MA – JULY 23, 2024 – Today, **Digital Twin Consortium**[®] (DTC) announced that members are developing and deploying Multi-agent GenAl Systems (MAGS) that are redefining the boundaries of how product design, services, and processes can be realized, born of efficiency and optimizations. Use cases include automotive, infrastructure, and manufacturing, where MAGS is utilized to drive significant productivity improvements, streamline operations, and maximize efficiency.


Digital twins are providing advanced levels of automation infused with GEN AI, not only integrating copilots but now utilizing MAGS to perform a multitude of tasks either operating independently, self-organizing, self-optimizing and orchestrated—with or without a traditional human in the loop for decision-making guided by human oversight that is free from conventional repetitive routine activities.

MAGS Examples

Manufacturing Automotive Infrastructure



Multi-Agent Generative Systems in Industrial Applications

Webinar includes a live demonstration of MAGS managing an industrial business process using digital twins.

AUGUST 28, 2024

Unlocking Automotive AI Use-Cases with Multi-Agent Generative Al Systems

PRESENTER: Eugene Kniazev, SODA.Auto Head of AI

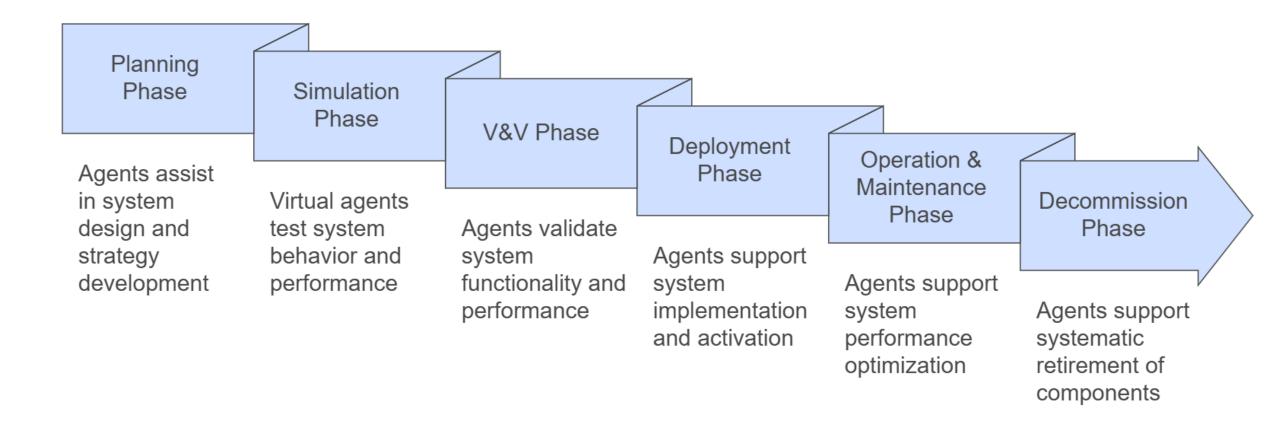
SEPTEMBER 25, 2024 11:00 AM ET

MAGS Webinars

https://www.digitaltwinconsortium.org/webinars/

PRESENTER: GREG PORTER, SEVITECH PRINCIPAL SOLUTIONS ARCHITECT

DECEMBER 4, 2024

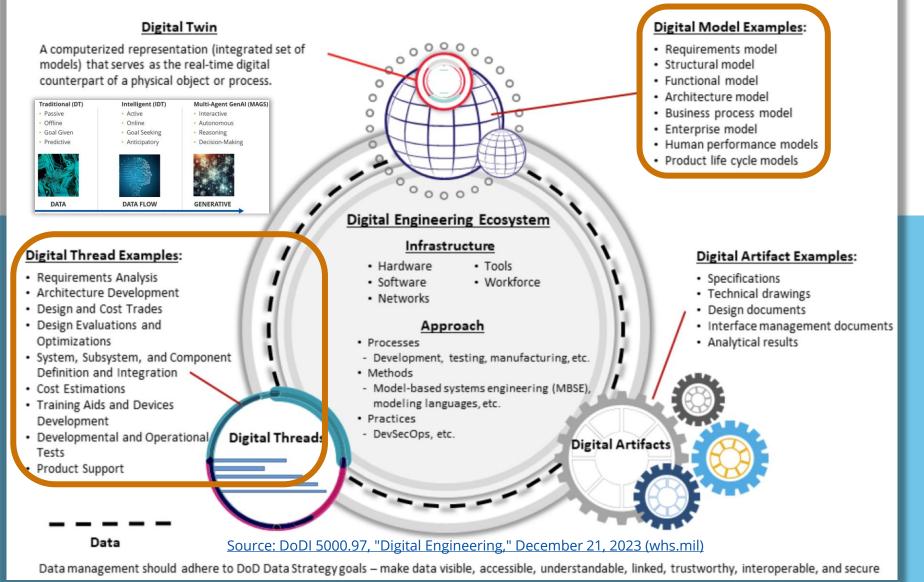

11:00 AM ET

Agent Lifecycle Phases

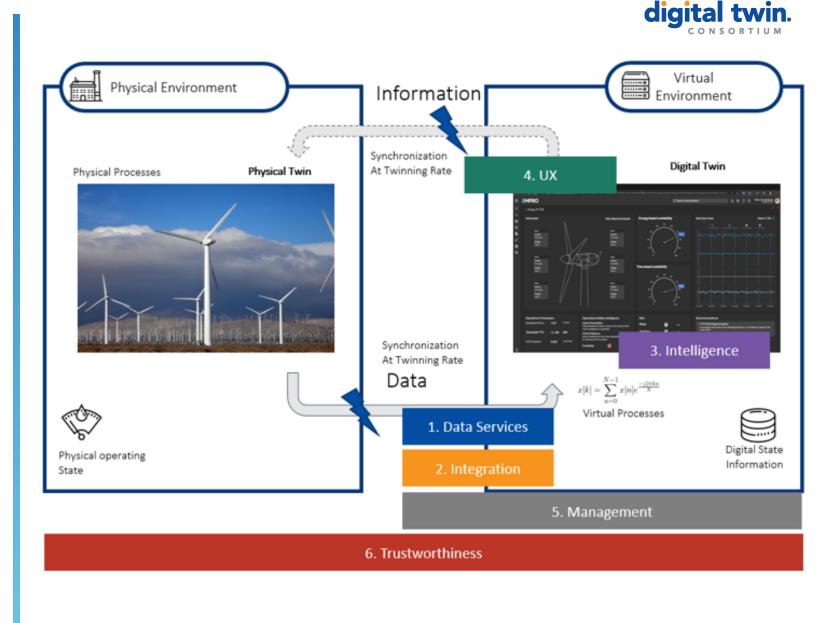
Manufacturing Digital Twin-based Agent Lifecycle Phases

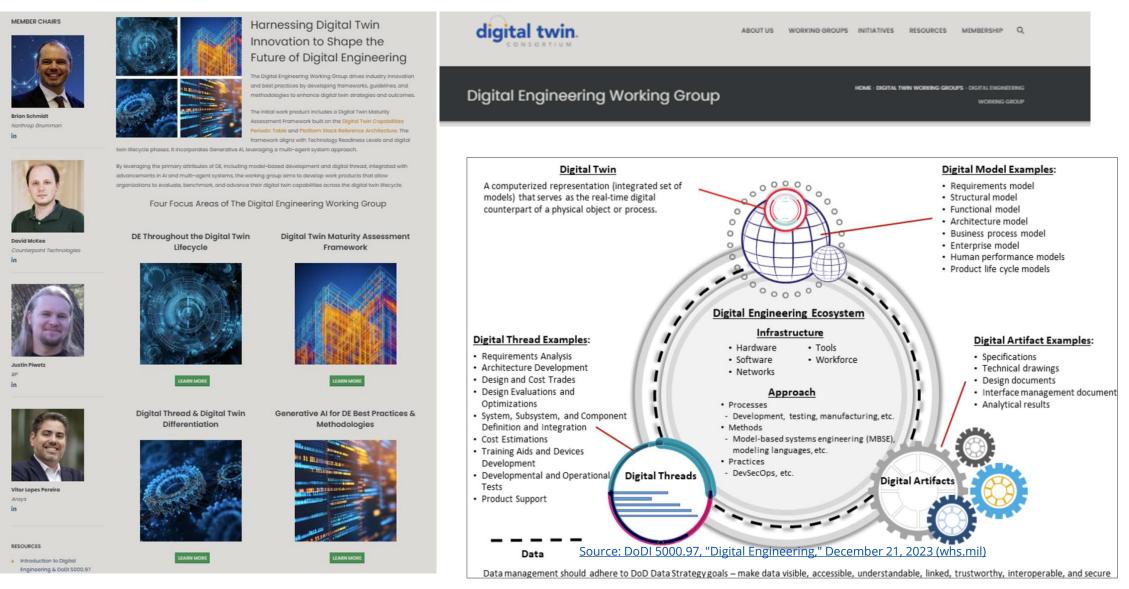
	Application Type	Planning Phase Value	Simulation Phase Value	Verification & Validation Value	Deployment Phase Value	Value Measurement Method & KPIs
	Factory Layout Optimization	Agents simulate different equipment placement scenarios and material flow patterns during layout planning	Virtual agents stress-test layout configurations with varying production scenarios	Agents validate layout effectiveness through virtual production runs against defined constraints	Agents assist in physical setup by providing real-time guidance for equipment positioning	- Layout Efficiency Score - Material Flow Distance Reduction - Space Utilization Improvement - Setup Time Reduction - Number of Layout Iterations
	Process Control System Design	Agent-based modeling of control strategies and system interactions during architectural planning	Multi-agent simulation of control scenarios including fault conditions and edge cases	Agents perform automated testing of control logic across various operational scenarios	Agents guide staged implementation of control systems with learning-based adaptation	- Control Strategy Coverage - Edge Case Detection Rate - System Response Accuracy - Implementation Success Rate - Time to Deployment
Planning Phase	Supply Chain Network Design	Agents model different network configurations and supplier relationships during strategic planning	Virtual agents simulate supply chain dynamics under various disruption scenarios	Agents validate network resilience through automated scenario testing	Agents assist in phased network activation and partner onboarding	 Network Resilience Score - Risk Assessment Accuracy Partner Integration Success - Implementation Timeline Adherence - Cost Optimization Achievement
Agents assist in system	Maintenance System Architecture	Agents help design optimal maintenance strategies and resource allocation plans	Virtual maintenance scenarios simulated with varying resource constraints	Agents validate maintenance procedures through virtual execution and timing analysis	Agents support gradual transition from preventive to predictive maintenance	- Strategy Coverage Score - Resource Allocation Efficiency - Procedure Validation Rate - Implementation Progress - System Readiness Metrics
design and strategy development	Quality Control Network Design	Agents model inspection point placement and testing strategies during system design	Multi-agent simulation of quality control scenarios with varying defect types	Agents validate inspection procedures through virtual production runs	Agents guide implementation of quality control systems with learning capabilities	 Inspection Coverage Score - Defect Detection Capability Procedure Effectiveness - Implementation Accuracy System Performance Metrics
	Energy Management System Design	Agents model energy distribution networks and consumption patterns during planning	Virtual agents simulate energy usage scenarios and demand response strategies	Agents validate energy management strategies through virtual grid scenarios	Agents support phased implementation of energy optimization systems	 Energy Efficiency Prediction - Strategy Effectiveness System Response Accuracy - Implementation Progress Cost Reduction Achievement
	Production Scheduling System	Agents design scheduling rules and constraints during system architecture	Virtual agents simulate scheduling scenarios with varying production demands	Agents validate scheduling algorithms through virtual production runs	Agents assist in gradual transition from static to dynamic scheduling	 Algorithm Effectiveness - Constraint Satisfaction Rate Schedule Optimization Level - Implementation Success System Adaptation Speed
	Inventory Management System	Agents model inventory policies and storage strategies during system design	Multi-agent simulation of inventory dynamics under various demand patterns	Agents validate inventory policies through virtual supply chain scenarios	Agents guide implementation of dynamic inventory management	 Policy Effectiveness Score - Storage Optimization Level System Response Accuracy - Implementation Progress Cost Efficiency Achievement
	Robot Control System Design	Agents model robot interaction patterns and workspace coordination during planning	Virtual agents simulate robot collaboration scenarios and safety protocols	Agents validate robot control algorithms through virtual operation scenarios	Agents support phased implementation of collaborative robotics	 Interaction Safety Score - Collaboration Efficiency Algorithm Validation Rate - Implementation Success System Performance Metrics
	Environmental Control Design	Agents model facility environmental control strategies during system planning	Virtual agents simulate environmental response under various conditions	Agents validate control strategies through virtual facility scenarios	Agents guide implementation of adaptive environmental systems	- Strategy Effectiveness Score - Response Accuracy Rate - System Validation Level - Implementation Progress - Efficiency Achievement

Source: (DTC insights with Gen Al)


Expanding Scope

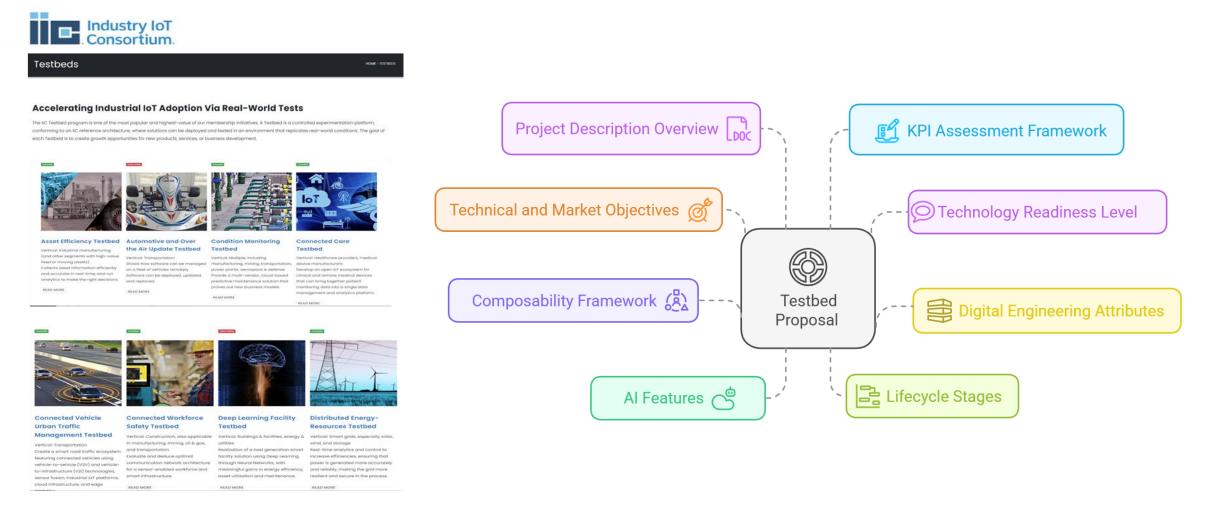
Digital Engineering Attributes


Digital Twin Consortium Scope Expansion

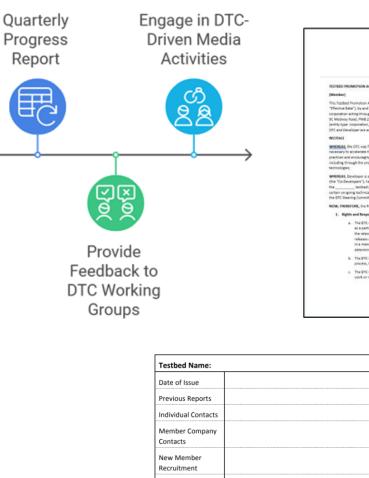

Digital Twin Definition

A digital twin is an **integrated data-driven** virtual representation of real-world entities and processes, with **synchronized interaction** at a specified frequency and fidelity.

Digital Engineering Working Group


New Testbed Initiative

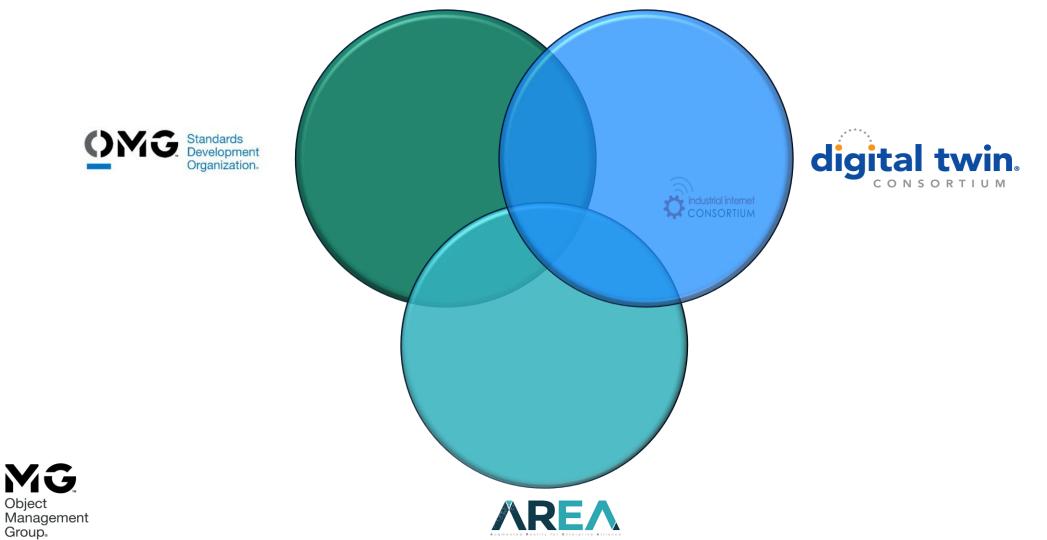
DTC Testbed Initiative



Based on the IIC Testbed program success – DTC is reinvigorating a streamlined testbed initiative

DTC Testbed Development

Deliverable Documents Timeline


Status Updates

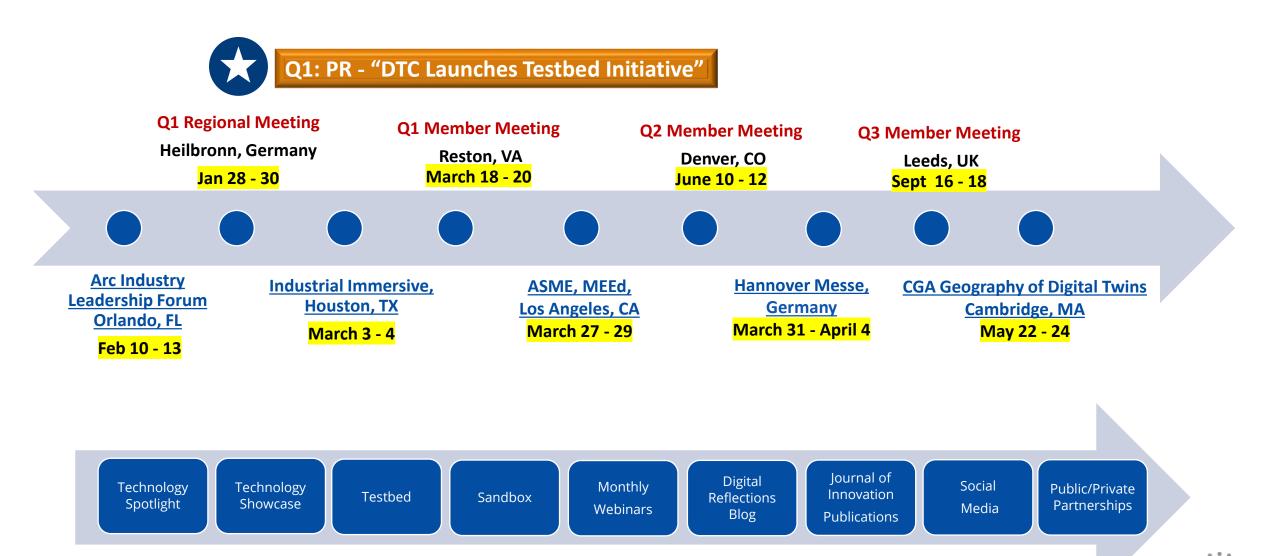
Items to Resolve

did

OMG Consortia Community Combined Expertise

OMG Cross-Consortia AI Joint Working Group

Standardization & Semantics


Interoperability & Intelligent Automation

Extended Reality (AR/MR/VR) Responsible Al/Ethics & Data Provenance

FOCUS AREAS

Member Contribution / Collaboration

37

Advancing Innovation and Business Outcomes

Learn More - Get Involved !

www.digitaltwinconsortium.org

Thank You!

